[1]刘丽员,杨昔阳.基于文本相关性的高校网络舆情监控系统的设计与实现[J].泉州师范学院学报,2016,(02):50-54.
 LIU Liyuan,YANG Xiyang.Based on Text Relevance of the Design and Implementation of University Network Public Opinion Monitoring System[J].,2016,(02):50-54.
点击复制

基于文本相关性的高校网络舆情监控系统的设计与实现()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年02期
页码:
50-54
栏目:
数理科学
出版日期:
2016-04-15

文章信息/Info

Title:
Based on Text Relevance of the Design and Implementation of University Network Public Opinion Monitoring System
文章编号:
1009-8224(2016)02-0050-05
作者:
刘丽员1 杨昔阳2
1.泉州师范学院 网络信息中心,福建 泉州 362000;
2.泉州师范学院 数学与计算机科学学院,福建 泉州 362000
Author(s):
LIU Liyuan1YANG Xiyang2
1.Network Information Center,Quanzhou Normal University,Quanzhou 362000,China;
2.College of Mathematics and Computer Science,Quanzhou Normal Universit,Quanzhou 362000,China
关键词:
聚焦网络爬虫 聚类 文本相关性 舆情信息 话题发现
Keywords:
focused crawler cluster text relevance public opinion information topic detectio
分类号:
TP393.09
文献标志码:
A
摘要:
随着互联网的发展,高校大学生通过网络对各个热点问题发表意见和评论,一些负面的舆情信息会对高校造成巨大危害.为了实现校园网的公共安全,利用聚焦网络爬虫技术和聚类技术设计实现了一个基于文本相关性的高校网络舆情监控系统.根据高校网络舆情的特点,对聚焦爬虫和聚类算法进行一些改进,以提高热点话题发现的效率和精确度,从而有效增强对大学生网络舆情的监控.
Abstract:
Along with the development of the Internet,college students through the network express opinions on the hot issues and comments,some of the negative public opinion information will do great harm to colleges and universities.In order to realize the campus network of public security,based on the focused web crawler technology and cluster technology implements a university network public opinion monitoring system is designed.According to the characteristics of university network public opinion,some improvements were made on crawler and the clustering algorithm in order to improve the efficiency and accuracy,find the hot topic so as to effectively enhance the monitoring of the college students' network public opinion.

参考文献/References:

[1] 中国互联网络信息中心.第37次中国互联网络发展状况统计报告[EB/OL].[2016-01-23].http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201601/P020160122444930951954.pdf.
[2] 刘敏姬,李伟东.论高校校园网络舆情的特点、监测及管理应对[J].湖北社会科学,2011,10(10):171-174.
[3] 刘燕,刘颖.高校网络舆情的特点及管理对策[J].网络思想政治教育,2009,4(4):46-48.
[4] CHAKRABARTI S,VAN DEN BERG M,DOM B.Focused crawling:a new approach to topic-specific web rescource discovery [J].Computer Net-works,1999,31(11):1623-1640.
[5] 陈欢.面向垂直搜索引擎的聚焦网络爬虫关键技术研究与实现[D].武汉:华中师范大学,2014.
[6] 焦赛美.网络爬虫技术的研究[J].琼州学院学报,2010,18(5):28-30.
[7] BERKELEY.Proceedings of the 5th Berkeley symposium on mathematical statistics and probability[M].Berkeley:University of California Press,1967:281-297.
[8] YANG Y,CARBONELL J,BROWN R,et al.Learning approaches for detecting and tracking news events[J].Intelligent Systems & Their Applications IEEE,1999,14(4):32-33.

备注/Memo

备注/Memo:
作者简介:刘丽员(1982-),女,福建晋江人,实验师,硕士,主要从事网络应用研究.
基金项目:泉州师范学院校自选项目(2012KJ10)
更新日期/Last Update: 2016-04-15