[1]曾钦辉,卢豪良*,李裕红,等.铜和镉复合污染对红树林区微生物群落结构和沉积物酶活性的影响[J].泉州师范学院学报,2018,(02):13-21.
 ZENG Qinhui,LU Haoliang,LI Yuhong,et al.Effects of Cadmium and Copper Pollution on Microbial Community and Enzyme Activities in Mangrove Sediment[J].,2018,(02):13-21.
点击复制

铜和镉复合污染对红树林区微生物群落结构和沉积物酶活性的影响()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
13-21
栏目:
生命科学
出版日期:
2018-04-15

文章信息/Info

Title:
Effects of Cadmium and Copper Pollution on Microbial Community and Enzyme Activities in Mangrove Sediment
文章编号:
1009-8224(2018)02-0013-09
作者:
曾钦辉12卢豪良12*李裕红3张芳菲12梅德罡12徐明祎12严重玲12
1.厦门大学 滨海湿地生态系统教育部重点实验室,福建,厦门 361102; 2.厦门大学 环境与生态学院,福建,厦门 361102; 3.华侨大学 环境科学与工程系,福建,厦门 361021
Author(s):
ZENG Qinhui12LU Haoliang12 LI Yuhong3ZHANG Fangfei12MEI Degang12XU Mingyi12YAN Chongling12
1.Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems,Xiamen University,Fujian 361102,China; 2.College of the Environment and Ecology,Xiamen University,Fujian 361102,China; 3.Department of Environmental Science and Engineering, Huaqiao University,Fujian 361021,China
关键词:
重金属污染 土壤酶活性 微生物群落多样性 磷脂脂肪酸
Keywords:
heavy metal pollution soil enzyme activities microbial community diversity phospholipid fatty acid
分类号:
Q945.78
文献标志码:
A
摘要:
采用野外样地研究与室内根箱栽培相结合的方法,对漳江口红树林保护区铜、镉污染生境沉积物微生物结构与土壤酶活性进行研究,旨在探讨其对重金属的响应.微生物磷脂脂肪酸数据表明漳江口红树林湿地3种红树植物秋茄(Kandelia obovata)、白骨壤(Avicennia marina)、桐花树(Aegiceras corniculatum)根际土壤微生物群落的多样性与林外光滩区域比较差异有统计学意义(P<0.01).根际沉积物中荧光素水解酶(Fluorescein diacetate,FDA酶)、脲酶、蔗糖酶活性与光滩差异有统计学意义(P<0.05).基于野外研究,室内开展不同浓度Cu和Cd(Cu 60 mg/kg,Cd 2 mg/kg 和Cu 60 mg/kg,Cd 4 mg/kg)处理的根箱栽培实验.结果表明,重金属污染对根际土壤微生物生物量和微生物多样性的抑制效应有统计学意义(P<0.05).随着重沉积物中重金属浓度增加,土壤中的3种酶的活性差异有统计学意义(P<0.05).微生物生物量,磷脂脂肪酸含量与土壤酶活性的相关性有统计学意义(P<0.05).土壤酶活性与微生物群落结构可作为指示红树林重金属污染的敏感指标.
Abstract:
In this paper,we studied the microbiological structure and soil enzyme activities of copper and cadmium pollution habitat in the Zhangjiang Estuary mangrove reserve with the aim of exploring the response to heavy metals by combining the field study and rhizobox cultivation.Microbial phospholipid fatty acid(PLFA)data showed that the diversity of rhizosphere soil microbial community in Kandelia obovata, Avicennia marina and Aegiceras corniculatum were significantly higher in the Zhangjiang Estuary mangroves wetlands than in the mudflat(P<0.01).Fluorescein diacetate(FDA),urease and invertase activities in rhizosphere sediments were significantly higher than those in mudflats(P<0.05).Based on the field studies,the indoor cultivation experiments conducted with different concentrations of Cu and Cd(Cu 60 mg/kg,Cd 2 mg/kg and Cu 60 mg/kg,Cd 4 mg/kg)showed that heavy metal pollution was significant inhibit(P<0.05)rhizosphere soil microbial biomass and microbial diversity.The activities of three enzymes in sediment all decreased significantly with the increase of heavy metal concentration(P<0.05).Microbial biomass,phospholipid fatty acid content and soil enzyme activity had a significant positive correlation(P<0.05).Soil enzyme activity and microbial community structure can be used as sensitive indicators of mangrove pollution.

参考文献/References:

[1] GLEESON J,SANTOS I R,MAHER D T,et al.Groundwater surface water exchange in a mangrove tidal creek:evidence from natural geochemical tracers and implications for nutrient budgets[J].Marine Chemistry,2013,156:27 37.
[2] SANDILYAN S,KATHIRESAN K.Decline of mangroves A threat of heavy metal poisoning in Asia[J].Ocean & Coastal Management,2014,102:161 168.
[3] NOBI E P,DILIPAN E,THANGARADJOU T,et al.Geochemical and geo statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands,India[J].Estuarine Coastal and Shelf Science,2010,87(2):253 264.
[4] FERNANDEZ CADENA J C,ANDRADE S,SILVA COELLO C L,et al.Heavy metal concentration in mangrove surface sediments from the north west coast of South America[J].Marine Pollution Bulletin,2014,82(1/2):221 226.
[5] WANG W Y,ZHANG X F,YAN C L,et al.Interactive effects of cadmium and pyrene on contaminant removal from co contaminated sediment planted with mangrove Kandelia obovata(S.,L.)Yong seedlings[J].Marine Pollution Bulletin,2014,84(1/2):306 313.
[6] QIU Y W,YU K F,ZHANG G,et al.Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island,China[J].Journal of Hazardous Materials, 2011,190(1/2/3):631 638.
[7] 张妍,崔骁勇,罗维.重金属污染对土壤微生物生态功能的影响[J].生态毒理学报,2010,5(3):305 313.
[8] CHEN J H,HE F,ZHANG X H,et al.Heavy metal pollution decreases microbial abundance,diversity and activity within particle size fractions of a paddy soil[J].Fems Microbiology Ecology,2014,87(1):164 181.
[9] CHEN Y P,LIU Q,LIU Y J,et al.Responses of soil microbial activity to cadmium pollution and elevated CO2[J].Scientific Reports,2014,4:6.
[10] 韩桂琪,王彬,徐卫红,等.重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响[J].水土保持学报,2012,24(5):238 242.
[11] GAO Y,ZHOU P,MAO L,et al.Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure:modified ecological dose response model and PCR RAPD[J].Environmental Earth Sciences,2010,60(3):603 612.
[12] 高扬,毛亮,周培,等.Cd,Pb污染下植物生长对土壤酶活性及微生物群落结构的影响[J].北京大学学报(自然科学版),2010,46(3):339 345.
[13] 龚骏,宋延静,张晓黎.海岸带沉积物中氮循环功能微生物多样性[J].生物多样性,2013,21(4):434 445.
[14] Zelles L.Fatty acid patterns of phospholipids and lipopolysac charides in the characterisation of microbial communities in soil:a review[J].Biol Fertil Soils,1999,29:111.
[15] CHEN Q,ZHAO Q,LI J,et al.Mangrove succession enriches the sediment microbial community in South China[J].Scientific Reports,2016,6:9.
[16] YANG Q,LEI A P,LI F L,et al.Structure and function of soil microbial community in artificially planted Sonneratia apetala and S.caseolaris forests at different stand ages in Shenzhen Bay,China[J].Marine Pollution Bulletin,2014,85(2):754 763.
[17] CHAMBERS L G,GUEVARA R,BOYER J N,et al.Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil[J].Wetlands,2016,36(2):361 371.
[18] LI J,LIU J C,LU H L,et al.Influence of the phenols on the biogeochemical behavior of cadmium in the mangrove sediment[J].Chemosphere,2016,144:2206 2213.
[19] WHITE D C,DAVIS W M,NICKELS J S,et al.Determination of the sedimentary microbial biomass by extractable lipid phosphate[J].Oecologia,1979,40:51 62.
[20] HUANG Z Q,WAN X H,HE Z M,et al.Soil microbial biomass,community composition and soil nitrogen cycling in relation to tree species in subtropical China[J].Soil Biology & Biochemistry,2013,62:68 75.
[21] 王菲,袁婷,谷守宽,等.有机无机缓释复合肥对不同土壤微生物群落结构的影响[J].环境科学, 2015,36(4):1461 1467.
[22] SWISHER R,CARROLL G C.Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces[J].Microbial Ecology,1980,6(3):217 226.
[23] JIANG S,HUANG J,LU H L,et al.Optimisation for assay of fluorescein diacetate hydrolytic activity as a sensitive tool to evaluate impacts of pollutants and nutrients on microbial activity in coastal sediments[J].Marine Pollution Bulletin,2016,110(1):424 431.
[24] GAO M L,SONG W H,ZHOU Q,et al.Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass[J].Environmental Toxicology and Pharmacology,2013,36(2):667 674.
[25] GUO H,YAO J,CAI M M,et al.Effects of petroleum contamination on soil microbial numbers,metabolic activity and urease activity[J].Chemosphere,2012,87(11):1273 1280.
[26] SUN Z G,MOU X J,SUN W L.Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary,China[J].Chemosphere,2016,147:163 172.
[27] SUN Z G,MOU X J,LIU J S.Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China[J].Environmental Earth Sciences,2012,66(8):2235 2246.
[28] ZHANG S J,LI T X,ZHANG X Z,et al.Changes in pH,dissolved organic matter and Cd species in the rhizosphere soils of Cd phytostabilizer Athyrium wardii(Hook.)Makino involved in Cd tolerance and accumulation[J].Environmental Science and Pollution Research,2014,21(6):4605 4613.
[29] 卢豪良,严重玲.秋茄(Kandelia candel(L))根系分泌低分子量有机酸及其对重金属生物有效性的影响[J].生态学报,2007,27(10):4173 4181.
[30] WILLERS C,VAN RENSBURG P J J,CLAASSENS S.Phospholipid fatty acid profiling of microbial communities a review of interpretations and recent applications[J].Journal of Applied Microbiology,2015,119(5):1207 1218.
[31] TIAN C C,WANG C H,TIAN Y Y,et al.Effects of root radial oxygen loss on microbial communities involved in Fe redox cycling in wetland plant rhizosphere sediment[J].Fresenius Environmental Bulletin,2015,24(11B):3956 3962.
[32] TIAN C C,WANG C B,TIAN Y Y,et al.Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants[J].Polish Journal of Environmental Studies,2015,24(4):1795 1802.
[33] JIA Y,HUANG H,CHEN Z,et al.Arsenic uptake by rice is influenced by microbe mediated arsenic redox changes in the rhizosphere[J].Environmental Science & Technology,2014,48(2):1001 1007.
[34] WANG Y Y,FANG L,LIN L,et al.Effects of low molecular weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons[J].Chemosphere,2014,99:152 159.
[35] JIA H,LU H L,DAI M Y,et al.Effect of root exudates on sorption, desorption,and transport of phenanthrene in mangrove sediments[J].Marine Pollution Bulletin,2016,109(1):171 177.

备注/Memo

备注/Memo:
收稿日期:2017-10-31
通信作者:卢豪良(1978-),男,福建寿宁人,副教授,从事红树林湿地污染生态学研究,E-mail:luhl@xmu.edu.cn.
基金项目:国家自然科学基金(31570503); 国家重点研发计划(2017YFC0506102)
更新日期/Last Update: 2018-04-15