[1]李亚恒,陈金华*.邮轮旅游网络关注度时空特征及其影响因素[J].泉州师范学院学报,2018,(02):102-108.
 LI Yaheng,CHEN Jinhua*.Temporal and Spatial Characteristics of Attention Degree in Cruise Tourism Network and ItsInfluencing Factors[J].,2018,(02):102-108.
点击复制

邮轮旅游网络关注度时空特征及其影响因素()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
102-108
栏目:
旅游管理
出版日期:
2018-04-15

文章信息/Info

Title:
Temporal and Spatial Characteristics of Attention Degree in Cruise Tourism Network and ItsInfluencing Factors
文章编号:
1009-8224(2018)02-0102-07
作者:
李亚恒陈金华*
华侨大学 旅游学院,福建 泉州 362021
Author(s):
LI YahengCHEN Jinhua*
Tourism Department, Huaqiao University, Fujian 362021,China
关键词:
邮轮旅游 网络关注度 时空特征
Keywords:
cruise tourism network attention spatial temporal characteristics
分类号:
F590
文献标志码:
A
摘要:
利用百度指数系统,获取我国31个地区2011-2017年的网络关注度指数,并通过变异系数、季节集中指数、赫芬达尔系数、地理集中指数、回归分析等对我国邮轮旅游网络关注度的时空特征进行分析.研究发现:我国邮轮旅游网络关注度月份分布呈“倒V”形的特点,且存在季节性差异; 各地区邮轮旅游网络关注度集聚程度较低,关注较为分散; 三大区域间邮轮旅游网络关注度差异显著,且整体上差异缓慢减少,集聚程度增加.进一步分析发现,经济发展水平、网络发达程度、网民年龄和旅游业发展水平等因素影响邮轮旅游网络关注度差异,文章在此基础上提出相应建议.
Abstract:
Based on the Baidu Index from 2011 to 2017 about network attention of cruise tourismof 31regions in China,this paper analyses the temporal and spatial characteristics of thenetwork attention of cruise tourism by using variation coefficient,seasonal concentrationindex, Herfindahl coefficient, geographical concentration index and regression analysis Time space features of the analysis.It is found that the monthly distribution of attention oncruise tourism networks in China is characterized by an inverted V shape and seasonalvariations.The degree of concentration of the cruise tourism network in each region isrelatively low, and the attention is scattered; the difference among the three regional cruise networks payattention is significant, and the overall difference slowly decreases,and the degree of agglomeration increases.Further analysis revealed that factors such as thelevel of economic development, the degree of network development, the age of Internet users,and the level of tourism development affect the differences in the degree of attention ofcruise travel networks,corresponding suggestions were put forward on the basis.

参考文献/References:

[1] 中国互联网络信息中心.第40次中国互联网络发展状况统计报告[R/OL].(2017 08 03)
[2018 03 29].http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201708/t20170803_69444.htm.
[2] 龙茂兴,孙根年,马丽君.区域旅游网络关注度与客流量时空动态比较分析:以四川为例[J].地域研究与开发,2011,30(3):93 97.
[3] 品橙旅游.中国邮轮产业发展报告(2017)[R/OL].(2017 11 02)
[2018 03 20].http://www.sohu.com/a/201773693_425901.
[4] 曹新向.充分利用网络,为旅游研究和决策提供服务[J].旅游学刊,2007,22(5):11 12.
[5] JORG Rech.Discovering trends in software engineering with Google trend[J].SoftwareEngineering Notes,2007(2):1 2.
[6] BARBER B M, ODEAN T.All that glitters:the effect of attention and news on the buyingbehavior of individual and institutional investors[J].Review of Financial Studies, 2008,21(2):785 818.
[7] RATCHFORD B T,TALUKDAR D,LEE M S.A model of consumer choice of the internet as aninformation source[J].International Journal of Electronic Commerce,2001,5(3):7 21.
[8] PAN B,FESENMAIER D R.Online information search: vacation planing process[J].Annual ofTourism Research,2006,33(3):809 832.
[9] SMITH G P.Google Internet search activity and volatility prediction in themarket for foreign currency[J].Finance Research Letters,2012(9):103 110.
[10] CHOI H,VARIAN H.Predicting the present with Google trends[J].The EconomicRecord, 2012,88:2 9.
[11] FONDEUR Y,ARAMÉ F K.Can Google data help predict French youth unemployment[J].EconomicModelling, 2013,10:117 125.
[12] 王康,李含伟.自媒体时代的企业网络舆情应对策略研究[J].情报科学,2018,36(1):113 117.
[13] 姜文杰,赖一飞,王恺.基于百度指数的房地产价格相关性研究[J].统计观察,2016(2):90 93.
[14] 蒋大亮,孙烨,任航,等.基于百度指数的长江中游城市群城市网络特征研究[J].长江流域资源与环境,2015,24(10):1654 1664.
[15] 林芹,郭东强.企业网络舆情传播的系统动力学仿真研究:基于传播主体特征[J].情报科学,2017,35(5):54 67.
[16] 何建民,李雪.面向微博舆情演化分析的隐马尔科夫模型研究[J].情报科学,2016,34(4):7 12.
[17] 马丽君,孙根年,黄芸玛.城市国内客流量与游客网络关注度时空相关分析[J].经济地理,2011,31(4):680 685.
[18] 李山,邱荣旭,陈玲.基于网络百度指数的旅游景区网络空间关注度:时间分布及其前兆效应[J].地理与地理信息科学,2008,24(6):102 107.
[19] 王硕,曾克峰,董洁.黄金周风景名胜区旅游客流量与网络关注度相关性分析[J].经济地理,2013,33(11):182 186.
[20] 邹永广,林炜玲,郑向敏.旅游安全网络关注度时空特征及其影响因素[J].旅游学刊,2015,30(2):101 109.
[21] 林炜玲,邹永广,郑向敏.旅游安全网络关注度区域差异研究:基于中国31个省市旅游安全的百度指数[J].人文地理,2014(6):154 160.
[22] 卢松,陆林,王莉.古村落旅游客流时间分布特征及其影响因素研究:以世界文化遗产西递、宏村为例[J].地理科学,2004,2(2):250 256.
[23] 张力.基于百度指数的地域网络关注度研究:以镇江为例[J].图书情报研究,2012,5(1):40 47.
[24] 周彩屏,戈冬梅.旅游规模差异及其位序规模体系研究:以浙江省为例[J].经济地理,2009,29(2):345 350.
[25] 保继刚,甘萌雨.改革开放以来中国城市旅游目的地地位变化及因素分析[J].地理科学,2004,24(3):365 370.

相似文献/References:

[1]李银宾,骆培聪*.基于百度指数的福厦5A级景区网络关注度对比[J].泉州师范学院学报,2017,(02):99.
 LI Yinbin,LUO Peicong*.A Comparative Study on Internet Popularity between the 5A Scenic Spots Located in Fuzhou and Xiamen Based on Baidu Index[J].,2017,(02):99.

备注/Memo

备注/Memo:
收稿日期:2018-01-17
通信作者:陈金华(1971-),男,福建龙岩人,副教授,博士,从事遗产旅游研究,E-mail:superkingth@126.com.
更新日期/Last Update: 2018-04-15