[1]危国华,庄平辉*.时间多项分数阶波动-反应方程的无网格方法[J].泉州师范学院学报,2019,(02):23-27.
 WEI Guohua,ZHUANG Pinghui*.The Meshfree Method for Solving the Multi-term Time Fractional Wave-reaction Equation[J].,2019,(02):23-27.
点击复制

时间多项分数阶波动-反应方程的无网格方法()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
23-27
栏目:
数学·计算科学
出版日期:
2019-04-15

文章信息/Info

Title:
The Meshfree Method for Solving the Multi-term Time Fractional Wave-reaction Equation
文章编号:
1009-8224(2019)02-0023-05
作者:
危国华1庄平辉2*
1.福建广播电视大学三明分校,福建 三明 365000; 2.厦门大学 数学科学学院,福建 厦门 361005
Author(s):
WEI Guohua1ZHUANG Pinghui2*
1.Sanming Branch,Open University of Fujian,Fujian 365000,China; 2.School of Mathematical Sciences,Xiamen University,Fujian 361005,China
关键词:
时间多项分数阶导数 移动最小二乘法 无网格方法 非牛顿流体力学模型
Keywords:
multi-term time fractional operator moving least square meshless method non-Newton mechanics model
分类号:
O242.2
文献标志码:
A
摘要:
尝试采用基于无网格方法的移动最小二乘求解带有时间多项分数阶导数的波动-反应方程.首先利用差分思想离散多项时间分数阶导数,并用移动最小二乘法离散空间变量,得到微分方程的数值逼近格式.然后在数值算例中,分别对矩形区域和圆形区域采用规则点划分,均得到近似程度较好的计算结果,较好地验证了所提出数值方法的有效性.
Abstract:
In this study,the attempt was made to apply moving least square based on meshless method for solving multi-term time fractional wave-reaction equation.Firstly,we discretized the multi-term time fractional derivatives using finite difference,and discretized the space variable using moving least square.The approximating scheme was obtained for the differential equation.Then in the numerical results,distributing the rectangle and circle domain using regular nodes,good approximating results were obtained,which testifies the efficiency of the presented method.

参考文献/References:

[1] FRIEDRICHC.Relaxation and retardation functions of the Maxwell model with fractional derivative[J].Rheologica Acta,1991,30(2):151-158.
[2] QI H,XU M.Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model[J].Acta Methanica Sinica,2007,23(5):463-469.
[3] KHAN M,ALI S H,QI H.Some accelerated flows for a generalized Oldroyd-B fluid[J].Nonlinear Analysis Real World Applications,2009,10(2):980-991.
[4] TRIPATHI D.A mathematical model for the peristaltic flow of chyme movement in small intestine[J].Mathematical Biosciences,2011,233(2):90-97.
[5] BOSE D,BASU U.Incompressible viscoelastic flow of a generalised Oldroyed-B fluid through porous medium between two infinite parallel plates in a rotating system[J].International Journal of Computer Applications,2013,79(1):13-20.
[6] KARATAY I,KALE N,BAYRAMOGLU S R.A new difference scheme for time fractional heat equations based on the Crank-Nicholson method[J].Fractional Calculus and Applied Analysis,2013,16(4):892-910.
[7] REN J,SUN Z.Efficient numerical solution of the multi-term time fractional diffusion-wave equation[J].East Asian Journal on Applied Mathematics,2015,5(1):1-28.
[8] LIU G,GU Y.An introduction to meshfree methods and their programming[M].Berlin:Springer,2005.

备注/Memo

备注/Memo:
收稿日期:2018-12-21
通信作者:庄平辉(1963-),男,福建泉州人,教授,博士,从事微分方程数值解研究,E-mail:zxy1104@xmu.edu.cn.
更新日期/Last Update: 2019-04-15