[1]吴春秀,陈明玉.半离散模型的宽移动堵塞行波解[J].泉州师范学院学报,2019,(06):30-33.
 WU Chunxiu,CHEN Mingyu.Wide Moving Jam Solution of a Semi-discrete Model[J].,2019,(06):30-33.
点击复制

半离散模型的宽移动堵塞行波解()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
30-33
栏目:
数学·计算科学
出版日期:
2019-12-15

文章信息/Info

Title:
Wide Moving Jam Solution of a Semi-discrete Model
文章编号:
1009-8224(2019)06-0030-04
作者:
吴春秀陈明玉
泉州师范学院 数学与计算机科学学院,福建 泉州 362000
Author(s):
WU ChunxiuCHEN Mingyu
School of Mathematics and Computer Science,Quanzhou Normal University,Fujian 362000,China
关键词:
Lagrange坐标 弱解理论 交通流 宽移动堵塞 行波解
Keywords:
Lagrange coordinate weak solution theory traffic flow wide moving jam traveling wave solution
分类号:
O29; U121
文献标志码:
A
摘要:
在Lagrange坐标下,对一个宏观高阶交通流模型进行离散,得到相应的半离散模型.运用弱解理论,推导出描述宏观高阶模型宽移动堵塞行波解特征参数的方程组.借助数值模拟,验证当质量增量趋于零时半离散模型的宽移动堵塞行波解收敛于宏观高阶模型的解析解.
Abstract:
A semi-discrete model is obtained by discretizing a macroscopic high-order traffic flow model under the Lagrange coordinate. The weak solution theory is applied to obtain a set of equations of the characteristic parameters about the wide moving jam solution of the macroscopic high-order model. The results of numerical simulation verify that the wide moving jam solution of the semi-discrete model converges to the analytical solution of the macroscopic higher-order model for the mass increment tends to zero.

参考文献/References:

[1] KERNER B S,KONHÄUSER P.Structure and parameters of clusters in traffic flow[J].Phys Rev E,1994,50:54-83.
[2] KERNER B S,KONHÄUSER P.Cluster effect in initially homogeneous traffic flow[J].Phys Rev E,1993,48:R2335-R2338.
[3] BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical model of traffic congestion and numerical simulation[J].Phys Rev E,1995,51:1035-1042.
[4] HELBING D,TILCH B.Generalized force model of traffic dynamics[J].Phys Rev E,1998,58:133-138.
[5] GREENBERG J M,KLAR A,RASCLE M.Congestion on multilane highways[J].SIAM J Appl Math,2003,63:818-833.
[6] GREENBERG J M.Congestion redux[J].SIME J Appl Math,2004,64(4):1175-1185.
[7] ZHANG P,WU C X,WONG S C.A semi-discrete model and its approach to a solution for wide moving jam in traffic flow[J].Physica A,2012,391:456-463.
[8] WU C X,SONG T,ZHANG P,et al.Phase-plane analysis of a conserved higher-order traffic flow model[J].Appl Math Mech,2012,33(12):1505-1521.
[9] JIANG R,WU Q S,ZHU Z J.A new continuum model for traffic flow and numerical tests[J].Transp Res Part B,2002,36:405-419.
[10] WHITHAM G B.Linear and nonlinear waves[M].New York:John Wiley and Sons,1974.
[11] LAX P D.Shock waves and entropy[M]//ZARANTONELLO E H.Contributions to nonlinear functional analysis.New York:Academic Press,1971.

备注/Memo

备注/Memo:
收稿日期:2019-10-08
作者简介:吴春秀(1978-),女,安徽凤阳人,副教授,博士,主要从事微分方程和交通流研究.
基金项目:国家自然科学基金资助项目(11602128)
更新日期/Last Update: 2019-12-15