[1]崔玉胜.应用于QoS组播路由的改进量子遗传算法[J].泉州师范学院学报,2019,(06):45-50.
 CUI Yusheng.Research on Improved Quantum Genetic Algorithm for QoS Multicast Routing[J].,2019,(06):45-50.
点击复制

应用于QoS组播路由的改进量子遗传算法()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
45-50
栏目:
数学·计算科学
出版日期:
2019-12-15

文章信息/Info

Title:
Research on Improved Quantum Genetic Algorithm for QoS Multicast Routing
文章编号:
1009-8224(2019)06-0045-06
作者:
崔玉胜
闽南理工学院 信息管理学院,福建 石狮 362700
Author(s):
CUI Yusheng
Department of Information Management,Minnan University of Science and Technology,Fujian 362700,China
关键词:
量子计算 遗传算法 QoS 组播路由 收敛速度 全局寻优
Keywords:
quantum computing genetic algorithm QoS multicast routing convergence rate global optimization
分类号:
TP393.04
文献标志码:
A
摘要:
针对 QoS组播路由的最优求解问题,提出一种改进量子遗传算法.首先使用将图形网络拓扑简化为树形网络拓扑,并在种群初始化过程中引入基于概率划分的小生境协同进化策略.然后设计了新的量子旋转门调整规则,以便实时处理量子旋转角,从而提高量子搜索的收敛速度并增加了种群的多样性,然后采用基于锦标赛选择机制的灾变算子,以便全局寻优和收敛速度能够得到有效平衡.最后,将该算法与其他智能启发算法进行仿真对比.实验仿真结果表明:改进后的量子遗传算法能获得比其他智能启发算法更优的解,同时具有更快的收敛速度和较好的全局寻优能力.
Abstract:
An improved quantum genetic algorithm is proposed for the optimal solution of QoS multicast routing.Firstly,the minimum cost multicast tree algorithm is used to simplify the graph network topology into a tree network topology,and a niche co-evolution strategy based on probability partitioning is introduced in the population initialization process.Then a new quantum revolving door adjustment rule is designed to process the quantum rotation angle in real time,which improves the convergence speed of quantum search and increases the diversity of the population.Then,the catastrophe operator based on the tournament selection mechanism is adopted to overcome the premature phenomenon.Finally,the algorithm is compared with other intelligent heuristic algorithms.The experimental results show that the improved quantum genetic algorithm can obtain better solutions than other intelligent heuristic algorithms,and has faster convergence speed and better global optimization ability.

参考文献/References:

[1] BAROLLI A,SPAHO E,BAROLLI L,et al.QoS routing in ad-hoc networks using GA and multi-objective optimization[J].Mobile Information Systems,2016,7(3):169-188.
[2] EIZA M H,OWENS T,NI Q,et al.Situation-aware QoS routing algorithm for vehicular Ad Hoc networks[J].IEEE Transactions on Vehicular Technology,2015,64(12):5520-5535.
[3] LI G,BOUKHATEM L,MARTIN S.An intersection-based QoS routing in vehicular Ad Hoc networks[J].Mobile Networks & Applications,2015,20(2):268-284.
[4] GUCK J W,BEMTEN A V,REISSLEIN M,et al.Unicast QoS routing algorithms for SDN: a comprehensive survey and performance evaluation[J].IEEE Communications Surveys & Tutorials,2017,99:1.
[5] ALANAZI A,ELLEITHY K.Real-time QoS routing protocols in wireless multimedia sensor networks: study and analysis[J].Sensors,2015,15(9):22209-22233.
[6] 许利军,杨棉绒.QoS组播路由的多种群遗传算法[J].科技通报,2012,28(5):171-174.
[7] 马连博,胡书培,王兴伟,等.小生境粒子群优化ABC支持型QoS组播路由机制[J].华中科技大学学报(自然科学版),2016,44(11):97-102.
[8] 贺智明,梁云飞.基于双链量子遗传算法的多约束QoS组播路由算法[J].计算机应用与软件,2013,30(1):250-252.
[9] 万振凯,曾蕾.基于改进的量子粒子群算法在QoS组播路由中的研究[J].计算机科学,2014,41(s2):39-42.
[10] LIN D Y,WALLER S.A quantum-inspired genetic algorithm for dynamic continuous network design problem[J].Transportation Letters,2015,1(1):81-93.
[11] BAWAZER L A,IHLI J,COMYN T P,et al.Genetic algorithm-guided discovery of additive combinations that direct quantum dot assembly[J].Advanced Materials,2015,27(2):223-227.
[12] JIN Z,HOU Z,YU W,et al.Target tracking approach via quantum genetic algorithm[J].IET Computer Vision,2018,12(3):241-251.
[13] 王宝伟.量子遗传算法的改进研究及在路由选择问题中的应用[D].济南:山东师范大学,2009.
[14] 肖世昌,孙树栋,国欢.灾变遗传算法求解带时间窗的车辆调度问题[J].计算机应用研究,2014,31(12):3568-3571.

相似文献/References:

[1]施伟民,牛文雅,杨昔阳.矩阵编码型遗传算法及其在碎片复原中的应用[J].泉州师范学院学报,2015,(06):63.
 SHI Weimin,NIU Wenya,YANG Xiyang.Matrix-coded Genetic Algorithmand Its Application on Fragment Reconstruction[J].,2015,(06):63.

备注/Memo

备注/Memo:
收稿日期:2018-12-07
作者简介:崔玉胜(1981-),男,河南信阳人,讲师,硕士,从事物联网技术、人工智能、多媒体交互等研究.
基金项目:福建省教育厅科技规划项目(JAT160595)
更新日期/Last Update: 2019-12-15