[1]李东征,谢志春.双积分算子下调和映照的单叶半径估计[J].泉州师范学院学报,2020,(06):34-37.
 LI Dongzheng,XIE Zhichun.The Estimation of Univalent Radiusfor Harmonic Mappings under Double Integral Operator[J].,2020,(06):34-37.
点击复制

双积分算子下调和映照的单叶半径估计()
分享到:

《泉州师范学院学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
34-37
栏目:
数理科学
出版日期:
2020-12-15

文章信息/Info

Title:
The Estimation of Univalent Radiusfor Harmonic Mappings under Double Integral Operator
文章编号:
1009-8224(2020)06-0034-04
作者:
李东征谢志春
厦门工学院 数学系,福建 厦门 361021
Author(s):
LI DongzhengXIE Zhichun
Department of Mathematics,Xiamen Institute of Technology,Xiamen Fujian 361021,China
关键词:
双积分算子 调和映照 极值函数 单叶半径
Keywords:
double integral operator harmonic mapping landau theorem univalent radius
分类号:
O174.55
文献标志码:
A
摘要:
研究单位圆盘上的调和映照在一定的规范条件下双积分算子的单叶半径,得到其结论是精确的,并给出其极值函数; 之后研究单位圆盘上的调和映照在不同规范条件下双积分算子的单叶半径,得到其结论是渐进精确的.
Abstract:
In this paper the single leaf radius of the double integral operator on the unit disk under certain standard conditions was studied.The conclusion was accurate and its extremum function was given.After studying the single leaf radius of the double integral operator on the unit disk,the conclusion was gradual and accurate.

参考文献/References:

[1] LEWY H.On the non-vanishing of the jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42:689-692.
[2] AHLFORS L V.Complex analysis[M].New York:McGraw-Hill,1979.
[3] LAUDAU E.Der Picard-schottysche satz und die blochsche konstanten[J].Sitzungsber Preuss Akad Wiss Berlin Phys Math Kl,1926:467-474.
[4] LIU M S.Estimates on Bloch constants for planar harmonic mappings[J].Sci China Ser,2009,52A(1): 87-93.
[5] CHEN S,PONNUSAMY S,WANG A X.Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings[J].Bull Malaysian Math Sciences Soc,2011,34(2):255-265.
[6] 夏小青,黄心中.平面有界调和函数的Bloch常数估计[J]. 数学年刊,2010,31A(6):769-777.
[7] ALEXANDE J W.Functions which map the interior of the unit circle upon simple regions[J].Annals of Math,1915,17:12-22.
[8] NAGPAL S,RAVICHANDRAN V.Construction of subclasses of univalent harmonic mapings[J].Korean Math Soc,2014,51(3):567-592.
[9] CHEN X D,MU J J.Sharp hereditary convex radius of convex harmonic mappings under an integral operator[J].Korean J Math,2016,24(3):369-374.
[10] 谢志春,李东征.积分算子下调和映照的单叶半径估计[J].数学的实践与认识,2019,2:273-278.

备注/Memo

备注/Memo:
收稿日期:2020-06-19
作者简介:李东征(1986-),女,河南新乡人,讲师,硕士,主要从事函数论研究.
基金项目:福建省中青年教师教育科研项目(JAT170807); 厦门工学院科研项目(KY2017004)
更新日期/Last Update: 2020-12-15